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ABSTRACT:  The demand for the natural resources is continuously increasing due to growth in human 

population.  One of the important natural resource that feeds millions of people is fisheries and is currently 

under great stress and needs to be managed in sustainable way, if this resource is not managed properly it 

will cause widespread starvation, species extinction, and considerable human instability. The present study is 

an attempt to introduce some of the mathematical models that may be used to understand the natural 

resources like fisheries that will aid in proper management. 
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I. INTRODUCTION 

Proper management and planning of natural resources 

and environmental systems has become an issue from 

last few years as pollution  and resource stress  

problems have led to a variety of impacts and liabilities. 

On the other hand, due to comples problems of world, 

achieving a reasonable and efficient management 

strategy is difficult as different many conflicting factors 

have to be balanced. There are many factors that need 

to be considered by planners and decision-makers, such 

as social, economic, technical, legislational, 

institutional, and political issues, as well as 
environmental protection and resources conservation in 

resources and environmental systems.  In addition to 

that, variety of processes and activities are interrelated 

to each other, resulting in complicated systems with 

interactive, dynamic, nonlinear, multiobjective, 

multistage, multilayer, and uncertain features. These 

complexities may increase due to their interactions with 

economic consequences when the promises of targets 

are violated. Mathematical models are effective tools 

that could help examine economic, environmental, and 

ecological impacts of alternative pollution-control and 

resources-conservation actions, and thus aid planners or 
decision-makers in formulating cost-effective 

management policies. 

For sustaining life, dynamics of each food resources 

like animals, fish, plants etc takes steps to ensure that 

overharvesting, pollution, and urban sprawl do not 

drive these resources into collapse. Hence managers 

determine maximum harvest levels that are sustainable 

over the long run called maximum sustainable harvest 
(MSH) with minimum effort without driving a 

particular food source to extinction.  

A simple logistic model with the inclusion of a 

harvesting contribution by taking input from 

Beddington and May is described [2]. Although it is a 

particularly simple one it brings out several interesting 

and important points which are more sophisticated 

models must also take into account. The economic 

factors by Clark [6,7,8] and harvest models with 

optimal control theory by Kot [11], a review by Plant 

and Mangel [14] are all concerned with insect pest 
management. Rotenberg [15] considered the logistic 

model with harvesting, with a view [1,12,13] to making 

the model more quantitative. He also examined the 

effects of certain stochastic parameters on possible 

population extinction. 

When a species is introduced and no harvesting occurs, 

it will grow to a size that is nearly constant and 

regulated by the carrying capacity K of the 

environment. At this point, the rate of change of the 

population is nearly zero, as the birth and death rates 

are equal, predictable, and stable. When harvesting 

occurs, population levels can change drastically, 
depending on the particular level of harvest. 

On the other hand, it is possible in some populations to 

harvest a certain amount of that resource with the 

knowledge that new births will exceed deaths and push 

the population back to its carrying capacity. It turns out 

that we can use the concept of differentiation to 

estimate maximum sustainable harvest. 
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II. OBJECTIVES 

1) To determine the population function in 

proportional and constant harvesting. 

2) To estimate the Maximum Sustainable 

Harvesting. 
3) To know equilibrium state in the population 

during harvesting and time taken to reach it. 

4) Determination of an optimal harvesting 

strategy by steady state analysis of the 

dynamic behavior. 

III. EVALUATION 

To see how this model works, let we assumed that a 

population grows according to the logistic model, 

written as a derivative. In this case, the mathematical 

model can be written as ���� = � �1 − �	
�,															�
0� = ��													
1� 

Where r is a constant, P is the population at time t, and 

K is the carrying capacity of the environment. By 
solving this equation for population P, we get 

� = 	1 + �	�� − 1����� 																
2�	 
As � → ∞, ���� = 	: Carrying Capacity, this is shown 

in figure 1. 

 

The time required to attain a population is given by 

�	 = 1� 		 ln  �	
	 − �����
	 − �	�! 					∀				 ≠ �									
3� 

IV. PROPORTIONAL HARVESTING 

When harvesting occurs and some proportion of the 

population is removed, our logistic model changes to ���� = � �1 − �	
� − %� = &
��,			�
0� = ��		
4� 
Where r is a population growth rate constant, s is the 

fraction of the population that is harvested, P is the 

population at time t, and K is the carrying capacity of 

the environment. By solving this equation for 

population P, we get � = 	1 + �	�� − 1� ��
��(�� 												
5� 
As � → ∞, ���� = 	: Carrying Capacity, this is shown 

in figure 2. 

 

The time required to attain a population in proportional 
harvesting is given by � = 1
� − %�	ln  �	
	 − �����
	 − �	�!						∀				 ≠ �											
6� 

A population is referred to as being in equilibrium 

when its rate of change is 0. Notice that in Equation (4), 

the population has reached a state of equilibrium when ���� = � �1 − �	
� − %� = 0 

By solving, we get �+ = 0			,-			�+ = 	 �1 − %��				
7� 

The population reaches to the equilibrium state (Pe) 

after time Te, /+ = 1
� − %� ln  �+
	 − �����
	 − �+�!														
8� 

OR /+ = 1
� − %�	ln  �1 − 	��
 �1 − �%�!							
9� 

This implies that at equilibrium, the proportion of the 

population that is harvested can be determined by 

multiplying both sides of Equation (7) by s, we get, �2 = %�+ = %	 �1− %��																				
10� 

Note that sP will be nonnegative when	(� < 1, or when % < �	 that is, when the proportion of the population 

harvested is less than the rate of growth of the 

population. Observe that if � > %	, the population will 

eventually disappear. 
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We can use Equation (10) to determine maximum 

sustainable harvest by finding when Ph=sPe reaches its 

maximum level. Note that the right-hand side of 

Equation (10) is a quadratic function of s, which attains 

a maximum value when s = r/2. Thus, the maximum 
sustainable harvest for proportional harvesting is found 

by substituting s = r/2 into Equation (10). That is, 

�5 = 678 = �+ . �2 = �2	 :1 − � 2;� < = �	4 								
11� 

Now steady state analysis of the dynamic behavior tells 

us something different from the usual. 

The growth rate f (P) in (4) as a function of P for 

various efforts s. Linearising (4) about �+ gives �
� − �+��� ≅ 
� − �+�&′
�+� = 
% − ��
� − �+�	
12� 
which shows linear stability if s < r : arrows indicate 

stability or instability in Figure 3. 
 

 
We can consider the dynamic aspects of the process by 

determining the time scale of the recovery after 

harvesting. If % = 0 then, from (7), �+ = 	, the 

recovery time t that is timescale of the reproductive 

growth from (6), we  get (3). 

But more realistically, the order of magnitude of the 

recovery time of P to its carrying capacity K after a 

small perturbation from K since, for P(t) - K small and �+ = 	, (12) shows �
� − 	��� ≅ −�
� − 	�,						�
0� = �� 					
13�		 
 => 			� − 	 = 
�� − 	�	���� 											
14� 
Recovery time to its carrying K after a small 

perturbation from K, for small (P(t) – K),  �>
% = 0� = 1� 		 ln ��� − 	� − 	 
							
15� 
 
 

 

If % ≠ 0, with 0 < s < r , then the recovery time in a 

harvesting situation, from (12) with the view of (9), is �>
% ≠ 0� = 1
� − %� ln  �1 − 	��
 �1 − �%�!							
16� 

And so �>
% ≠ 0��>
% = 0� = 1�1 − %��			 ln ?�1 − 	��� �1 − �%�@ln ��� − 	� − 	 �		 				
17� 

 

Thus for a fixed r, a larger s increases the recovery time 

since 
�A
(B���A
(C�� increases with s. When s = r/2, the value 

giving the maximum sustained yield	�5 , �> �% = �2��>
% = 0� = 2			 ln
	 − ��� − ln
���ln
	 − ��� − ln
	 − ��							
18�		 
The usual definition of a recovery time is the time to 

decrease a perturbation from equilibrium by a factor e. 

Then, on a linear basis, �>
% = 0� = 1� 		 , �>
% ≠ 0� = 1
� − %� =>	 �> �% = �2� = 2	�>
% = 0�						
19� 

 

Since it is the yield �2 that is recorded, if we solve (10) 

for s in terms of �2 we have %� = 1 ± E1 − �2�5 										
20� 
Therefore  �>
% ≠ 0��>
% = 0�

= 	 21 ± F1 − �2�5
			 ln ?�1− 	��� �1 − �%�@ln ��� − 	� − 	 �		 					
21� 

But on linear basis �>
% ≠ 0��>
% = 0� = 	 21 ± F1− �2�5
																
22�		 
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Suppose we start harvesting with a small effort s; then, 

as is clear from Figure (4b), the equilibrium population �+ is close to K and  �+ > K/2, the equilibrium 

population for the maximum yield �2. The recovery 

time ratio 
�A
(B���A
(C�� from (19) is then approximately 1.  

As we increase the harvesting rate s, the yield will 
increase until we are on branch C+. If s increases 

further, �+ decreases towards K/2, then we approach  

the value for the maximum sustained yield (MSH) �5 

and finally we reach to the point max in Figure (4a) 

when �+= K/2. As s is increased further such that �+ < 

K/2 then the recovery time is further increased but with 

a decreasing yield since we are now on the C- branch. 

From this deterministic point of view, an optimal 

harvesting strategy could be determined. An effort s 

should be made in such a way that keeps the 

equilibrium population density �+> K/2, but as close as 

possible to K/2 which gives the value for the maximum 

sustained yield. The closer to K/2, however, the 

situation becomes more delicate since we might 

inadvertently move onto branch C- in Figure (4a). At 

this stage, when �+ 	is close to K/2, a stochastic analysis 

should be carried out; this was done by Beddington and 

May [2] also which we have extended. Stochastic 

elements of course reduce the predictability of the 
catch. In fact, with this model, they decrease the 

average yield for a given effort s.  

V. CONSTANT HARVESTING 

When a constant number of individuals are harvested 

each year, a model studied by Brauer and Sanchez [3], 

our logistic model becomes 

 ���� = � �1 − �	
� − G	 ≅ &
�; �,	, G�,		 		�
0� 	= ��		
23� 
 

where r is a population growth rate constant, B is the 

number of individuals from the population that are 

harvested, P is the population at time t, and K is the 

carrying capacity of the environment. 
The population P in constant harvesting can be 

estimated by the formula, 

 

� = 	2 + I2 J1 + K2�� − 	 − I2�� − 	 + IL ����MN ��
1 − K2�� − 	 − I2�� − 	 + IL ����MN ��O										
24� 

 

Where  I = F	P − QNR� 		≥ 0 

As � → ∞,							���� = NP + MP 												
25� 

This shows in figure 5 graphically, 

 
 

And the time required getting a population P, � = 	�I 		TU V
2�� − 	 − I�
2�	–	 + I�
2�� − 	 + I�
2�	–	 − I�X	 	∀		� ≠ 	 + I2 								
26� 
Notice that in Equation (23), equilibrium is reached 

when the rate of change of the population is zero; that is 

when, 

 ���� = � �1 − �	
� − G = 0										
27� 
 

Observe that the middle piece of this equation is 

quadratic with respect to the population size P. This 

implies that it is equal to zero for two specific 

populations.  �	 �P − �� + G = 0 

OR �P − 	� + 	G� = 0 
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At first glance, we get  � = 	 ± I2  

Where   I = F	P − QNR� 		≥ 0 

 

These two values present an opportunity for two 

choices for harvest. We must, however, be sure that the 

sign of the derivative near these two values points us in 

the right direction. For example, in Equation (23), 

suppose those two populations’ YZ = N�MP 	 and YP =N[MP   produce two states of equilibrium, as shown by 

Fig. 6. 

 

 

In Figure 6, for values of P near, but below, p2, notice 

that the derivative is positive, indicating that the 

population will increase to the equilibrium point p2. For 

values of P near, but above, p2 the derivative is 

negative, indicating that the population will decrease to 

the point p2. This type of point is referred to as a stable 

equilibrium.  

The same analysis on p1 produces a different result. For 

example, the derivative is negative for values of P that 

are near, but below p1, indicating that the population 

will reduce and move away from the equilibrium point. 

For values of P that are near, but above p1, the 
derivative is positive, indicating that the population will 

increase beyond p1. This type of equilibrium point is 

referred to as an unstable equilibrium. 

The equilibrium states for the logistic growth harvested 

with a constant yield B in figure 7a and gives the 

graphical way of determining the steady states as B 

varies such that 0 < G < �NQ .  There are two positive 

steady states p1 and p2 which from Figure 7b are 

respectively unstable and stable. The growth rate  
\]\� 	 in 

equation (23) changing as the yield B increases, shown 

in figure 7b. 

 

 
 

 
 

It is pertinent to manage resources so that the 

population stays relatively close to a stable equilibrium. 

In this situation, waiting until the population gets near a 

stable equilibrium such as p2 is essential. To determine 

the maximum sustainable harvest, simply solve 

Equation (27) for B and then optimize the right-hand 

side of the equation. i.e. the maxima of a quadratic 

occurs at the vertex. G = � �1 − �	
�																						
28� 

This gives the number of harvested population taken 

each year constantly.  

Note that the right-hand side of Equation (28) is a 

quadratic function of P, which attains a maximum value 

when P = K/2. Thus, the maximum sustainable harvest 

for constant harvesting is found by substituting P = K/2 

into Equation (28). That is, 

 �5=678 = G^_�	� = 	 2; ` 

= � a1 − 	 2;	 b	2 = �	4 										
29� 
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For easy comparison with the constant harvesting 

model we evaluate the equivalent recovery time 

ratio	�A
RB���A
RC��	. The recovery time	�>
G ≠ 0� is only 

relevant to the stable equilibrium p2 which from (23) is 

YP = 	2 c1 + E1 − 4G�	d ,				G < �	4 							
30� 

The linearised form of (23) is then �
� − YP��� ≅ 
� − YP� �e&e�
fg 		
= −
� − YP��E1 − 4G�						
31� 

Now we can consider the dynamic aspects of the 

process by determining the time scale of the recovery 

after harvesting. If G = 0 then, from (30), YP = 	, the 

recovery time t that is timescale of the reproductive 

growth from (26), we again get (3).  
 

The order of magnitude of the recovery time of P to its 

carrying capacity K after a small perturbation from K 

since, for P(t) - K small and YP = 	, (31) shows 

 �
� − 	��� ≅ −�
� − 	�,					�
0� = ��									
32�			 
 => 			� − 	 = 
�� − 	�	���� 									
33� 
 

Recovery time to its carrying K after a small 

perturbation from K, for small (P(t) – K),  �>
G = 0� = 1� 		 ln ��� − 	� − 	 
										 		
34� 
Here we have noticed that the solution of (13) & (31) 

with different consideration as �+ = 	 & YP = 	 
respectively, is same shown (14) & (33). Similarly, the 

recovery time to its carrying capacity after a small 

perturbation from K, with different s=0 & B=0 is also 

same, shown (15) & (34) respectively.  

If G ≠ 0, then the recovery time in a harvesting 

situation, from (26), is �>
G ≠ 0� = 	�I		ln V
2�� − 	 − I�
2�	–	 + I�
2�� − 	 + I�
2�	–	 − I�X	 ∀	� ≠ 	 + I2 							
35� 

And so �>
G ≠ 0��>
G = 0�
= 	I 			ln  
2�� − 	 − I�
2�	–	 + I�
2�� − 	 + I�
2�	–	 − I�!ln ��� − 	� − 	 �		 			
36� 

The usual definition of a recovery time is the time to 

decrease a perturbation from equilibrium by a factor e. 

Then, on a linear basis, �>
G = 0� = 1� 		 , �>
G ≠ 0� = 	�I										
37�	 
Therefore, �>
G ≠ 0��>
G = 0� = 1F1− 4G�		,												
38�			 
Now using equation (29), we get �>
G ≠ 0��>
G = 0� = 1F1 − G�5

	,					�5 = �	4 			
39� 
Which shows that 

�A
RB���A
RC�� 	→ ∞ as G → �5 . This model 

is thus a much more sensitive one and, as a harvesting 

strategy, is not really adequate. 

VI. DISCUSSION 

The study concludes that a proportional harvesting 

rather than a constant yield harvesting strategy is 

potentially less disastrous. The derivations can be used 

to regulate to catch fishes with this simple model in the 

fishing laws. A more realistic model, on the lines 
described here, should take into account the economic 

costs of harvesting and other factors. This implies a 

feedback mechanism which can be a stabilising factor; 

Clark [6, 7, 8]. With the unpredictability of the real 

world it is probably essential to include feedback. 

Nevertheless such simple models can pose highly 

relevant ecological and long term financial factors 

which have to be considered in any more realistic and 

more sophisticated model. 

This mathematical models can be used to (i) explain 

complex environmental processes and interactions, 
characterize the spatial and temporal variations, and 

predict the fate and transport of the contaminants; (ii) 

study risks existing in various resources-related 

activists and the associated socioeconomic and 

environmental effects under a variety of system 

conditions; (iii) generate sound decision alternatives for 

generating desired policies that target on more effective 

resources and environmental conservation. 
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